M.Math. IInd year First semestral exam 2016 Number Theory Instructor : B.Sury Attempt ONLY SIX questions; Maximum Marks 60.

Q 1. (10 marks) Characterize with proof all primes expressible as $a^2 + 2b^2$.

OR

Let p > 2 be a prime and suppose a is a primitive root mod p. Prove that either a or a + p is a primitive root mod p^n for all n > 1.

Q 2. (10 marks)

Prove that a Fermat number $2^{2^n} + 1$ can never be a prime power p^r with $r \ge 2$.

\mathbf{OR}

Prove that $(p-2)! = 1 + p^n$ does not have any solution in primes p > 5 and positive integers n.

Q 3. (10 marks)

If n is not a prime, show that the sequence $d(n), d(d(n)), d(d(d(n))), \cdots$ must contain a perfect square.

OR

Prove that $\sum_{r|n} d(r)^3 = (\sum_{r|n} d(r))^2$.

Q 4. (12 marks)

Let a, b be coprime integers and c be a positive integer. Use the Chinese remainder theorem to prove there exists an integer n such that a + nb is coprime to c.

OR

Let $\zeta = e^{2i\pi/n}$ and $Q(n) = \prod_{(d,n)=1} (1-\zeta^d)$. Using the given hint or otherwise, prove for n > 1 that Q(n) = p or 1 according as to whether n is a power of a prime p or not a prime power.

prime p or not a prime power. *Hint:* Deduce $P(n) := \prod_{r=1}^{n-1} (1 - \zeta^r) = n = \prod_{d|n} Q(d)$ and use the Möbius inversion to deduce $Q(n) = \prod_{d|n} d^{\mu(n/d)}$ and use this to complete the solution.

Q 5. (12 marks)

Prove that the quadratic form $7x^2 + 25xy + 23y^2$ takes the same values as the quadratic form $x^2 + xy + 5y^2$ over integers.

OR

If $ax^2 + bxy + cy^2$ is a reduced, positive-definite integral form and $au^2 + buv + cv^2 \le a + |b| + c$ for some (u, v) = 1, prove that $au^2 + buv + cv^2$ must be one of $a, c, a \pm |b| + c$.

Q 6. (10 marks)

Obtain the value of the periodic, simple, continued fraction $[1; \overline{2,3}]$.

OR

Obtain the simple, continued fraction expansion of $\sqrt{a^2+1}$ for any natural number a.

Q 7. (12 marks)

(i) For any positive integer n, prove that $\{1, 2, \dots, 2n\}$ is a union of n pairs whose sums are primes.

(ii) If $\psi(n) := \sum_{p \text{ prime}, k \ge 1, p^k \le n} \log(p)$, prove that $\psi(n) \ge n \log(2)$ for sufficiently large n.

OR

(i) Prove that LCM $(1, 2, \dots, n) \ge 2^n$ for $n \ge 7$.

(ii) Prove that for n > 1, n! is not a k-th power for any k > 1.